返回首页

交互作用与相互作用的区别?

来源:www.callcentermkt.com   时间:2023-01-03 11:37   点击:276  编辑:admin   手机版

一、交互作用与相互作用的区别?

交互作用是指一个因素各个水平之间反应量的差异随其他因素的不同水平而发生变化的现象。它的存在说明同时研究的若干因素的效应非独立。

而相互作用是指事物之间或事物内部因素之间联系的一种表现形式。包括互相联结、互相斗争、互相促进、互相制约等关系。相互作用由作用和反作用两方面构成;作用和反作用不可分离,具有辩证统一的性质。

两者为不同概念的作用力,所指含义不同,意义也不一样。

二、有关实证分析中“调节”变量(效应)的一些细节解读

调节变量 的一个主要作用是为现有的理论划出限制条件和适用范围。研究调节变量时,我们正是通过研究一组关系在不同条件下的变化及其背后的原因,来丰富我们原有的理论的。

这里的“不同条件”就是理论的适用范围和假设。所以,调节变量能够帮助我们发展已有的理论,使理论对变量间关系的解释更为精细。

什么是调节变量?

简单来说,如果变量X与变量Y有关系,但是X与Y的关系受第三个变量Z的影响,那么变量Z就是调节变量。调节变量所起的作用称为调节作用。

我们以zhou等(2017)的研究为例。这个研究以中国企业为样本,探讨了新兴市场中企业的所有权类型通过研发投入水平进而对创新产生影响的过程,以及对这个关系产生影响的几个主要情景因素。

研究模型中有一部分探讨的是企业所有权类型对企业研发投入的影响以及制度发展水平对这个关系的调节作用。如下图所示,“制度发展水平”有一个箭头指向“企业所有权类型”影响“企业研发投入”的箭头(注:这个调节变量既不是指向“企业所有权类型”,也不是指向“企业研发投入”,而是指向两者的关系。)

这就是调节变量一般的图表表达方式。调节变量影响自变量和因变量之间的关系,既可以是对关系方向的影响,又可以是对关系强度的影响。在组织研究中,调节变量既可以是类别变量(如性别、种族、教育水平等),也可以是连续变量(如工资水平、智力等)

显然,调节变量的概念是建立在另外两个变量的关系之上的。如果没有两个变量的关系作为前提,也就不必讨论第三个变量的“调节作用”了。

调节效应的三种类型:

加强型(strengthening):指的是随着调节变量Z的值的增加,X―Y的正向或负向的关系被强化。

削弱型(weakening):指的是随着调节变量Z的值的增加,X―Y的正向或负向的关系被弱化。

颠覆型(reversing):指的是随着调节变量Z的值的增加,X―Y的关系从正向转为负向,或者从负向转化为正向。

研究中注意事项:

关于研究假设的文字表述。研究假设的提出应该尽量准确,我们不应该笼统的假设“Z在X与Y的关系中起到了调节作用”,而应该具体说明Z是如何调节X和Y的关系中。

例如:当变量Z高的时候,变量X会变量Y有正面的影响;当变量Z低的时候,变量X会变量Y有负面的影响。

到了这里,想必大家对调节变量的相关知识有了一定的认识了吧!

首先,调节作用和交互作用在统计上地检验方法相同,但两者在概念上是不同的。

1.交互作用

两个变量(X1和X2)共同作用时对Y的影响不等于两者分别影响Y的简单数学和。

2.调节作用

一个变量X1影响了另一个变量X2对Y的影响。

其次,在调节作用和交互作用的分析中,关于变量地位的不同。

1.交互作用

在交互作用的分析中,两个自变量的地位可以是对称的,可以把其中任何一个解释为调节变量;它们的地位也可以是不对称的,只要其中有一个起到了调节变量的作用,交互作用就存在。

2.调节作用

在调节作用中,哪个是自变量,哪个是调节变量是很明确的,是由理论基础决定的,在一个确定的模型中两者不能互换。

读到这里,相信大家已经能够很好的区分调节作用和交互作用了

用回归法检验调节作用

1.用虚拟变量代表类别变量

如果自变量或调节变量中有一个是类别变量,那么第一步首先就是将类别变量转换为虚拟变量(dummy variable)。所需的虚拟变量的数目等于类别变量的水平个数减1。

2.对连续变量进行中心化或者标准化

用回归的方法检验调节变量的一个重要步骤就是把自变量和调节变量中的连续变量进行整理。

3.构造乘积项

构造乘积变量时,只需要把经过编码或者中心化(或标准化)处理以后的自变量和调节变量相乘即可。

4.构造方程

构造乘积项之后,把自变量、因变量和乘积项都放到多元层级回归方程中就可以检验调节作用了。这时,乘积项的系数如果显著,就可以说明调节作用存在了。

5.调节作用的分析和解释

当检验中发现一个显著的调节作用存在时,下一个重要的步骤就是分析它的作用模式。

三、讨论是否有理由检验非线性关系和交互作用

SPSS中交互作用显著时,才能够进行简单效应检验。比如你说的道德性因子在年级和性别上交互作用显著时,你才能以道德性因子为因变量,A年级(1、2、3)和B性别(1、2)作为自变量进行简单效应检验。其中开始你用年级A1水平上,B1和B2是否有显著性差异(A1B1、A1B2),然后A2B1、A2B2;A3B1、A3B2三个进行简单效应检验。最后判断到底是谁起主要影响。

你说所得简单效应必须是存在交互作用的情况下才能进行,不然是不能进行简单效应。因为可以用自变量的主效应解释因变量的变异情况就OK。所以你只要看是性别对道德性因子影响大还是年级影响大。其他用主效应解释就OK,不显著的不用解释。

不知道你是否明白,可以继续和我交流。

顶一下
(0)
0%
踩一下
(0)
0%